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Introduction

It would be difficult to overestimate the importance of
chiral structures in chemistry and biology.[1–4] The original
statement by Lord Kelvin[5] allows no degrees of chirality, as
an object is either exactly superimposable on its mirror
image (enantiomorph), or it is not. However, the continuous
nature of properties such as rotational strength[6] or helical
twisting power[7] has encouraged many to think that one
molecule may be “more chiral” than another.[8,9]

For molecules, any one of the measurable pseudoscalar
spectroscopic properties gives a ready-made scale of chirali-
ty. Such a scale may suffer from false zeroes,[6b,8b] depend-
ence on the choice of property and lack of obvious exten-
sion to general geometric objects. The tetrahedron, a model
for the asymmetric carbon atom, is the simplest motif capa-
ble of exhibiting chirality in three dimensions, and there has
been discussion in the theoretical literature of the identity
of the “most chiral tetrahedron”.[8b,e,f] Herein we point out
that no absolute meaning can be attached to this term: it
has long been recognised that different criteria yield differ-
ent results,[8b] here we demonstrate that criteria can be
found that make any chiral tetrahedron the most chiral one.

This result is an extension of a conjecture made by
Dunitz[10] for the two-dimensional (2D) chirality of the sca-
lene triangle.

Functions proposed for the quantification of chirality fall
into two main types. A degree of chirality[8c] (c) is a quantity
that purports to measure the “amount of chirality” of a
given object, without regard to its absolute configuration;
thus the two mirror images of an object have the same value
of c. A chirality index[6a, 11] (y) is a quantity that takes into
account both “amount of chirality” and absolute configura-
tion, so that a chiral object and its mirror image have equal
and opposite values of y. Whereas c is a scalar quantity, y is
a pseudoscalar quantity, preserved under all proper and re-
versed under all improper transformations of the object.

In general, the definition of a chirality index as a continu-
ous function presents difficulties caused by the chiral con-
nectness of three-dimensional objects. Consider the formal
interconversion of the two enantiomers of a chiral object by
some continuous deformation: if it is possible to find a de-
formation pathway that consists entirely of chiral configura-
tions, then the object is said to be chirally connected.[12] Fa-
mously, potatoes are chirally connected,[12] as are chiral tet-
rahedra considered as sets of unlabelled vertices.[8b,13] If
labels are attached to the vertices, chiral tetrahedra lose this
property, since a set of labelled vertices must contain at
least five points if it is to be chirally connected.[14] In partic-
ular, a centred tetrahedral molecule such as the pentaatomic
substituted methane C(XYZW) is chirally connected,
whereas the empty tetrahedral cage XYZW is not. Our sub-
ject here is the chiral tetrahedron, free of labels.

Some pathways from a tetrahedron to its enantiomer may
happen to pass, en route, through achiral configurations,
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opposite, and hence it is easy to design
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space, and by incorporation of appro-
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rahedron is the most chiral for some le-
gitimate choice of degree of chirality.
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but, crucially, it will always be possible to devise pathways
that consist entirely of chiral configurations (see Figure 1
for an example). As a consequence, a smooth connection
between the enantiomer with positive y and the partner
with negative y then demands the existence of a “false
zero”, that is, a value of y=0 at a chiral configuration.[6b,8b]

This problem with y does not arise with the degree of chir-
ality, c which can be constructed to have no chiral zero.

It is useful to compare features of the chirality of simplex-
es in two and three dimensions. In two dimensions, the sca-
lene triangle exhibits (2D) chirality. Unlike tetrahedra, tri-
angles are not chirally connected:[8b,13,14] interconversion of a
chiral triangle and its enantiomer necessarily involves pas-
sage through an achiral intermediate structure. Degrees c

and indices y of 2D chirality can therefore both be defined
consistently for triangles. However, this does not lead to a
unique definition of the most chiral triangle. We have re-
cently confirmed the conjecture of Dunitz that it is possible
for any chiral triangle to appear as the most chiral for some
legitimate function c.[15] Hence the term “most chiral trian-
gle” has no meaning independent of a definition of the crite-
rion for quantification.

Our purpose here is to consider the equivalent problem in
3D chirality. We first review the requirements for a function
to be a candidate for a degree of chirality. The search for
the “most chiral tetrahedron” is the problem of maximising
a suitable scalar function c over the space of possible tetra-
hedra. It is shown that an infinity of purely geometrically
defined functions, all equally legitimate, have the properties
demanded of c. By exploiting the available flexibility it is
possible to design c in such a way as to push its extrema to
any chiral configuration. In other words, an extension of the
2D result holds: for some acceptable definition of degree of
chirality, any chiral tetrahedron is the most chiral tetrahe-
dron.

Degree of chirality : The objects whose chirality we wish to
investigate are all possible tetrahedra, considered as arrays
of four points linked by six edges. If a function is to serve as
a degree of chirality for a set of 3D geometric objects, it
should have the following basic properties:[8b]

1. It should be a real, continuous function of geometrical
parameters (internal coordinates) and hence indepen-
dent of any labelling scheme.

2. It should take equal values
for an object and its enan-
tiomorph.

3. It should vanish for all 3D
achiral objects in the set,
and only for the 3D achiral
objects. (A necessary conse-
quence,[15] sometimes for-
gotten,[8b] is that it should
vanish for all degenerate
(i.e. 2D and 1D) objects in
the set.)

4. It should be similarity invar-
iant, dimensionless and nor-
malisable to the interval [0,1].

As the function is intended for comparison and assign-
ment of extremal tetrahedra, another desirable property is
that it should have a highest maximum that is unique up to
isomorphism within the set of all tetrahedra. It is evident
that many, indeed infinitely many,[16] functions could satisfy
these basic requirements. In order to construct one of them,
it is necessary to define the “shape space” of tetrahedra,
within which we will work.

Representation of tetrahedral shape space : The four vertices
of a tetrahedron in 3D space have 12 degrees of freedom, of
which six represent rigid-body translations and rotations,
and one accounts for the breathing mode that interconverts
similarity-equivalent tetrahedra. There are many ways to de-
scribe the remaining five-dimensional space.[8b,e,f] One that
has some advantages, in particular for visualisation, is to re-
alise each tetrahedron on the circumsphere. This can be
done as follows: the radius R and origin of the circumsphere
are computed from a set of vertex coordinates (xi, yi, zi) by
solution of a set of linear equations; the coordinates are
shifted and scaled onto the unit sphere centred at the origin;
the tetrahedron is then rotated on that sphere so that one
edge AB is symmetrically placed on the “Greenwich meridi-
an”: that is, with polar coordinates qA=p�qB, fA=fB=0
for this edge and (qC, fC) and (qD, fD) for the vertices of the
opposite edge CD. Other conventions are possible. Mor-
eau[8f] uses a related five-angle description of tetrahedral
vertices on the circumsphere, in which two vertices are con-
strained to lie on the equator.

The set of five angles {qA, qC, fC, qD, fD} together span
(redundantly) the five-dimensional space of freedoms of the
tetrahedron: as the labels ABCD are disposable, any one of
the six edges can be chosen as AB, and either end chosen as
vertex A; thus, each enantiomer of a chiral tetrahedron
ABCD has up to 12 distinct presentations on the sphere, up
to 24 when the pair of enantiomers is taken together. It
would also be possible to define a single canonical setting
for each pair, perhaps based on a hierarchical choice of AB
by length, positioning C in a preferred octant, and so on.

A natural way to display the tetrahedra on the unit
sphere is with the second projection of Apianus.[17] The
spherical surface is transformed into an ellipse with linear
scaling of q on the vertical axis, from q=0 at the North Pole

Figure 1. Snapshots of a continuous chiral connection between the two enantiomers an unlabelled D2-symmet-
ric tetrahedron. At no stage on the path 1!2!3!4!5 does the object become achiral. Note that if the tetra-
hedron were labelled, 1 and 5 would no longer be an enantiomeric pair.
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to q=p at the South, and linear scaling of the chord of the
ellipse from f=�p to +p. A shortcoming of such a projec-
tion, inherent to the use of spherical polar co-ordinates, is
that the values of the f coordinates of C and D may suffer a
discontinuity when the route of a distortion takes a vertex
over a pole.

Whatever the internal coordinates used to define the
degree of chirality, its maximisation can be performed by
making a search in the space of qA, qC, fC, qD, fD, computing
the relevant internal coordinates of the implied tetrahedron
and using them to calculate the given objective function c.
All distinct presentations of the solution tetrahedron de-
fined by this process are calculated and can be visualised on
a single map, which represents the solutions of this five-di-
mensional problem in two dimensions.

Symmetry considerations : We are looking for functions that
vanish for all achiral tetrahedra and that are functions of in-
ternal coordinates only. To retain similarity invariance, all
tetrahedra are taken to have
unit circumradius. We use func-
tions of side lengths and incor-
porate the constraints imposed
by the symmetries of achiral
tetrahedra as conditions for
vanishing of these functions.

The tetrahedron has maxi-
mum point group symmetry Td,
attained when all edge lengths
are equal. Distorted 3D config-
urations with at least one
mirror plane belong to one of
the achiral C3v, D2d, C2v or Cs

groups. In degenerate planar,
linear or point configurations,
all 3D achiral, various other
symmetry groups are possible,
but are not relevant here. Dis-
torted 3D configurations with-
out a mirror plane belong to
one of the chiral D2, C2 or C1

groups. The other subgroups of
Td, that is, T and C3 (chiral) and
S4 (achiral), are not available to
systems of only four points.
Since S4 is not available, achir-
ality in a tetrahedron arises
only from the presence of at
least one mirror plane: there
are six such in Td, three in C3v,
two in C2v and one in Cs.

Each point group limits the number of degrees of freedom
within the set of edge lengths. As for any deltahedron,[18] the
reducible representation of the vibrations is identical with
that of the edge lengths, and the number of totally symmet-
ric components in this representation is the maximum
number of distinct edge lengths, that is, in the available
groups: 1 (Td), 2 (D2d, C3v), 3 (D2, C2v), 4 (C2, Cs), 6 (C1).
Additional equalities between non-equivalent edges can

occur, giving rise to the 25 cases shown in Figure 2, one for
Td, D2d, C3v, D2, two for C2v, three for C2, five for Cs, and
eleven for C1.

For each edge, there is a group of symmetry operations
that leave this edge unshifted. These site symmetries of the
edges determine the numbers of distinct settings in our car-
tographic representation of a given achiral tetrahedron or
enantiomeric pair of chiral tetrahedra. From the partition of
the set of edges of a tetrahedron of symmetry G into orbits,
and the contributions of edges in the different site symme-
tries, the numbers of distinct settings are found as in
Table 1. The edge orbits are indicated in Figure 2, in the
first entry for each point group G, by the use of different
line styles.

Design of a degree of chirality : Inspection of the different
cases in Figure 2 immediately suggests plausible forms of c.
As shown above, if the tetrahedron is achiral, it has a mirror
plane. Hence, in an achiral tetrahedron, there is a pair of op-

posite edges such that one edge lies in that plane and the
other is normal to and bisected by the plane. Suppose the
pair is AB, CD, with CD lying in the mirror plane. Then,
both AC=BC and AD=BD (AB is the length of edge AB)
and a function such as fCD is zero.

f CD ¼ ðAC�BCÞ2 þ ðAD�BDÞ2

Figure 2. The twenty-five classes of tetrahedra, arranged by maximum point group symmetry and side-length
pattern. Bold, feint, dashed, hatched, wavy and circle-decorated lines indicate distinct side lengths. The first
entry for each point group corresponds to the maximally disparate set of side lengths, thus illustrating the dis-
tribution and sizes of the different orbits of edges. For instance, C2v has one orbit of size 4 and two of size 1.
Second and following entries then correspond to the cases of side-length degeneracy compatible with the
given point group.
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If alternatively, the edge in the mirror plane is AB, the
function fAB vanishes.

f AB ¼ ðAC�ADÞ2 þ ðBC�BDÞ2

As there are three pairs of opposite edges, and two differ-
ent choices of in-plane edge, a function that vanishes for
any setting if and only if there is at least one mirror plane in
the tetrahedron is the symmetrised product F.

F ¼ f AB f AC f AD f BC f BD f CD

As all degenerate tetrahedra have zero volume, V, multi-
plication of F by V ensures that all conditions 1 to 4 are
met. V is itself a function of edge lengths, through 6 VR=D,
where R is the circumradius (here equal to 1) and D=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðS�S1ÞðS�S2ÞðS�S3Þ

p
, with S1=AB·CD ; S2=AB·BD ;

S3=AD·BC and 2S=S1+S2+S3.
[19] Thus, c1 is a legitimate

candidate for a degree-of-chirality function, whereas V and
F by themselves are not.

c1 ¼ VfAB fAC f AD f BC f BD f CD

The most chiral tetrahedron, as obtained by maximising
the function c1, has C2 symmetry, with relative side-lengths
given in entry T(1) of Table 2. One setting of this tetrahe-
dron is represented in Figure 3a on the cartographic projec-
tion, and Figure 3b shows the 12 distinct settings of the
enantiomeric pair defined by this set of side lengths.

However, it would be equally valid to take any one of
many other functions related to c1, such as cm with any posi-
tive real number m, which also possess all the attributes of a
degree of chirality. This simple modification, allowing varia-

cm ¼ VmfAB f AC f AD f BC f BD f CD

tion of the balance between 3D achirality and geometric de-
generacy conditions, leads to a continuum of “most chiral
tetrahedra”, T(m). Figure 4 shows (in the setting of Fig-
ure 3a) the trajectories of vertices under the variation of m.

As can be seen from the side lengths (Table 2), the tetrahe-
dra T(m) span a range of different shapes, from extremely
flattened to near isotropic, and all different from the various

Table 1. Number of different settings in the cartographic representation
as a function of the orbit structure of the set of edges. An orbit is denot-
ed On(H), where n is the number of equivalent edges in the set (see
Figure 2) and H is the site symmetry of an individual edge (i.e., the
group of symmetry operations that leave this edge unshifted). Orbit sig-
natures �mOn(H) list the numbers of copies (m) of the orbits of each
type. Edges in sites of C2v, C2, Cs and C1 symmetries contribute respec-
tively 1, 2, 2, 4 settings per group of equivalent edges to the total count.
For chiral tetrahedra, the count of settings includes an equal number for
each enantiomer.

G Edge orbits Settings

Td O6(C2v) 1
D2d O2(C2v) + O4(C2) 3
C3v 2O3(Cs) 4
C2v 2O1(C2v) + O4(C1) 6
D2 3O2(C2) 6
Cs 2O1(Cs) + 2O2(C1) 12
C2 2O1(C2) + 2O2(C1) 12
C1 6O1(C1) 24

Table 2. Predictions of the most chiral tetrahedron for different volume
exponent m in the family of degree-of-chirality functions cm. Entries
denote, for selected values of m, solutions T(m), given as sets of side
lengths AB···CD, here normalised to unity on the shortest side. All chiral
T(m) have C2 symmetry, with the C2 axis passing through opposite edges
AB and CD. The limiting achiral solutions [T(0)] (degenerate, trapezoi-
dal) and [T(8)] (regular tetrahedron) are also listed. For comparison,
data for the predictions from three functions taken from the literature
are also listed: side lengths for T(a)[8e] and T(b)[8f] are given by Moreau[8f]

and those for T(c) were calculated from the five independent internal an-
gles.[8b]

Tetrahedron AB AC AD BC BD CD

[T(0)] 2.366 1 2.996 2.996 1 3.362
T(1/16) 2.324 1 2.936 2.946 1 3.314
T(1/8) 2.284 1 2.899 2.899 1 3.261
T(1/4) 2.210 1 2.813 2.813 1 3.165
T(1/2) 2.086 1 2.665 2.665 1 3.010
T(1) 1.899 1 2.441 2.441 1 2.743
T(2) 1.667 1 2.153 2.153 1 2.412
T(5) 1.371 1 1.765 1.765 1 1.950
T(10) 1.226 1 1.529 1.529 1 1.659
T(20) 1.109 1 1.360 1.360 1 1.442
T(80) 1.027 1 1.169 1.169 1 1.194
T(320) 1.006 1 1.082 1.082 1 1.089
[T(¥)] 1 1 1 1 1 1
T(a) 1 1 1.6 1.6 1 2.3
T(b) 1.504 1 1.361 1.361 1 1.504
T(c) 1.396 1 1.385 1.385 1 1.614

Figure 3. Cartographic representation of the C2-symmetric most chiral
tetrahedron as predicted by c1, the simplest product function that satisfies
all conditions for a degree of chirality. a) A single setting of one enan-
tiomer of this tetrahedron, and b) the 12 different settings of the enantio-
meric pair. Labels ABCD in (a) are not attached to the tetrahedron, but
denote the vertices with polar coordinates (qA, fA)… as defined in the
text.
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published “most chiral tetrahedra” found with other criter-
ia.[8b,e,f] As m increases from 1 towards large positive values,
the C2-symmetric solution tetrahedron T(m) tends to Td

symmetry, all six side lengths equalising, and the vertices A,
B, C, D tending to the Td special positions on the projection,
that is, qA= (p�a)/2, qB= (p+a)/2, fA=fB=0, qC=qD=

p/2, fC=p�(a/2), fD=p+ (a/2), where a is the tetrahedral
angle, cos�1(�1/3)�109.478. As m decreases from 1 towards
zero, T(m) degenerates to a trapezium on the great circle at
f=0. Both limiting forms are understandable, as the func-
tion in the first case increasingly emphasises the volume
factor (maximised by the regular tetrahedron), and in the
second case progressively de-emphasises this factor, reduc-
ing its ability to protect against geometric degeneracy. At all
points on the path that fall short of the limits m=0 and m=¥,
the solution is an acceptable “most chiral tetrahedron” for
some well defined choice of functional form for degree of
chirality. All these chiral intermediate tetrahedra have C2

symmetry. It may at first seem paradoxical that chirality is
lost at both limits, but this is a straightforward consequence
of the fact that at each limit the function is no longer con-
strained to obey both parts of condition 3, as one factor or
the other becomes overwhelmingly dominant. A related
“paradox” is encountered when incomplete functions that
do not exclude degeneracy are used for 2D-chirality of tri-
angles.[8b,15] Had we not included the “safety” factor V to
protect from degenerate cases, we would have obtained the
paradoxical result that the most chiral tetrahedron is infini-
tesimally separated from a planar and degenerate trapezoid.

Further freedom can be introduced by generalising the
factors fAB, fAC,··· that were included in c to detect mirror
planes, for example, to the multi-parameter form fAB,npq (n,
p, q real and positive), to create degrees of chirality:

f AB,npq ¼ ½jACn�ADnjp þ jBCn�BDnjp
q

cmnpq ¼ VmfAB,npqf AC,npqf AD,npqf BC,npqf BD,npqf CD,npq

Functions of this form produce different solution tetrahe-
dra. Multiplication of any one cmnpq by a well behaved func-
tion that is symmetric in side lengths and positive for all
physical tetrahedra will also yield a new and legitimate
degree of chirality.

Combination of any legitimate degree-of-chirality func-
tion with a “pushing function”[15] P also yields a legitimate
candidate, and hence it should be possible to reproduce any
target chiral tetrahedron as the “most chiral” by suitable
choice of P. For instance, multiplication of c1 by a function
such as PT* with e set to a sufficiently small tolerance, will
send the maximum of the product PT*c1 to a point arbitrarily
close, to a precision determined by e, to the tetrahedron T*

defined by the target side lengths AB*, AC*, AD*, BC*, BD*

and CD*.

PT* ¼ 1
ðAB�AB*Þ2 þ ðAC�AC*Þ2 þ ðAD�AD*Þ2 þ ðBC�BC*Þ2 þ ðBD�BD*Þ2 þ ðCD�CD*Þ2 þ e

In particular, this functional form allows the target and
thus the “most chiral tetrahedron” to have any of the chiral
symmetries, D2, C2, C1, allowed for a tetrahedron. Moreover,
we may take the target to be an achiral or even a degener-
ate tetrahedron, such as a planar quadrangle, a triangle or a
“flat triangle”. A convenient choice of e can then make a
most chiral tetrahedron that is arbitrarily close to the non-
chiral target. The product PT*cmnpq can be renormalised to
bring it into the desired range [0,1]. Trial calculations indi-
cate that e�10�9 is generally sufficient to send the maxi-
mum to the target, whereas e�10+9 leaves the maximum
unchanged at the starting position T(1); variation of e be-
tween the two limits produces a variety of intermediate
“most chiral tetrahedra”. The infinity of choices of T*, m, n,
p and q give infinities of starting, intermediate and target
positions.

Conclusion

It is not unexpected that the “most chiral tetrahedra”
depend on the measure of chirality, but we see here that
they do not even cluster in any particular region of the
shape space. The present results demonstrate the correctness
of the extension of DunitzUs conjecture to the tetrahedron:
it is the case that, with an appropriate choice of degree of
chirality, any chiral tetrahedron, no matter how close to an
achiral limit, can be found to be the “most chiral tetrahe-
dron”, thus robbing the term of absolute significance.
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Figure 4. Trajectory of the most chiral tetrahedron under variation of the
volume exponent m in the family of degree-of-chirality functions cm. The
white-filled circles denote the C2-symmetric solution tetrahedron T(1) in
the setting of Figure 3a, and black-filled circles correspond to successive
solutions T(m), for different values of m. Moving from T(1) towards the
vertical axis, the points correspond to T(1/2), T(1/4), T(1/8), T(1/16);
moving from T(1) towards the horizontal axis, the points correspond to
T(2), T(2.5), T(3), T(4), T(5), T(10), T(20), T(40), T(80), T(160), T(320).
The limiting solutions T(0) (degenerate, trapezoidal) and T(8) (regular
tetrahedron) are denoted by stars. The side lengths of the different result-
ing tetrahedra are given in Table 2.
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